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Most Fourier transform algorithms, when seeking a single frequency at the sample-
time midpoint, simply choose the largest component of the set. The error is at least
0.5 component, and often larger. This article describes an addition to such algorithms
that reduces the variance error by three-to-one (nominal). The addition achieves this by
averaging all components within a predetermined ‘‘window,” selected as a function of
frequency rate, and it is quite easy to mechanize within the existing algorithm.

- I. Introduction

The Fourier transform, particularly the fast algorithm or
“FFT”, is used in numerous data-reduction applications in the
Deep Space Network (DSN). In many of these applications,
the transform acts as a kind of “digital filter,” yielding a single
largest component representing an input sinusoid. The usual
input signal is initially contaminated by additive noise, which
the transform “spreads out” into a low-order spectrum, atten-
uated ‘“‘around” the representative component. The spectrum
in use is the “discrete’ form of the “finite” Fourier transform,
finite implying a bounded time sample, and “discrete,” a finite
number of sample points.

When the sinusoid is not precisely synchronized with the
sample-point period (usual case), or when the frequency is
* time-variant, or both (normal tracking conditions), the signal
transform itself is a spectrum. Under normal conditions, this
spectrum contains from four to ten or more significant compo-
nents. If accuracy is important, the frequency chosen must be
associated with a given “time-tag’ within the time sample.

Normally, the first-order frequency excursion, or “ramp”
assumption is acceptable for DSN applications using sample
periods of (up to) a few seconds.

The present process is to simply select the “largest” com-
ponent as the estimate, associating this with the sample-time
center.

This article describes a supplementary averaging procedure
that gives promise of a significant improvement in accuracy
over the “largest component” method. If implemented, it
would require an addition to the existing algorithms, but the
addition would be neither particularly lengthly nor difficult
to mechanize. It would require one additional a priori input:
an estimate of the ramp-rate, or “F ”, as present on the sam-
ple. This could be obtained from RF doppler, as modified by
any additional corrective predicts.

The “F” values encountered in tracking normally vary

from about 1.0 Hz/sec (or less) up to 20 Hz/sec (or more). A
nominal value of 5 Hz/sec was chosen for the model to follow.
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II. The Finite Fourier Transform of a
“Frequency Ramp”

The continuous form of the finite Fourier transform, or
power spectral density, is (if noiseless):
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where, for the case in question:
F(t)=sin (27Tf0t +aft? + ¢0)

This is the envelope of the components obtained by the dis-
crete expression. With the discrete algorithms, components are
spaced “l1/7” apart, across a range “N/27”; N the discrete
sample point-count. “f,” is the frequency at the start of the
sample (sample length “7), and f is the “ramp-rate”, Hz/sec,
during 7. f is considered constant, thus implying neglect of
higher-order terms, if any. A model program to simulate
Eq. (1) in discrete form was coded for this study. At first
glance, Eq. (1) appears reasonably straightforward; it would
seem logical to simply evaluate the envelope (given f), then
“slide it across” sample data to obtain an estimate of f at
t =0, or some similar “best fit” result. This was, in fact, the
initial approach.

However, the envelope of Eq. (1) proved very cumbersome
to calculate, and this approach was discarded in favor of the
simpler routine to follow.

lll. Frequency-Time Estimate by
Component Averaging

Refer to Fig. 1; this is a typical discrete transform (Fig. 1)
that simulates Eq. (1) by the model program when:

7= 1sec
fy= 22Hz
f= 5 Hz/sec

The transform base is SO Hz long, with components 1.0 Hz
apart. V= 100 points. These are the “standard conditions” of
this study. The “bulk”™ of the study is an investigation of the
transform of Fig. 1 under various signal-to-noise ratios (SNR).
The purpose was to evaluate the accuracy with which the cen-
ter frequency of the spectrum could be related to the center of
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the time sample, 7/2, or 0.5 sec.The true frequency at 0.5 sec.
was 24.5 Hz in all cases.

The “inherent” error in the above case, strong signal, by
the “largest component” method, is 0.5 Hz; the true center
frequency is midway between two components, one of which
is chosen. In general, this strong signal error will have a stand-
ard deviation of 0.35 Hz, the well-known “1/,/T2” constant.

However, as the noise increases (artificially “injected” in
the model program), the “largest component” became more
and more likely to appear at locations other than “adjacent to”
the center. Refer to Figs. 2, 3 and 4 for typical results. In one
run, at -5 dB SNR, this component actually appeared at
2.0 Hz, a value that would have led to data discard.

The random-displacement naturally led to increased ““sigma”,
or standard deviation. Model results for this, based on 12 sam-
ples at each of three SNR, are shown on Fig. 5 (outer set),
with estimated extrapolations. These describe the error, using
present techniques, for the stated (Fig. 1) conditions, plus-
noise, as obtained by the model program.

Even though the envelope of Eq. (1) is unreasonably com-
plex to express in its total form, it is easy to show that it is not
only symmetric above the center f{r/2), but that it attenuates
(“dwindles™) rapidly outside of the waveform frequency
excursion due to f The details are omitted.

These characteristics of the envelope led directly to the
concept of component averaging, which relies on the signal
power of all signal components present, rather than upon a
“single representative.” The process is two-fold:

(1) Using an estimate of the envelope width, or “spread”
obtained from an a priori measure of f, a sequential set
of component power summations is taken, within a
“window” of this width, across the entire spectrum.
The region of greatest total power is assumed to
contain the center frequency.

(2) The second step involves averaging the power-frequency
components in the “window.” Even though envelope
symmetry does not imply component symmetry, when
several components are in the “window,” the heights
(power) of the corresponding “pairs” (closest fre-
quency “fit” on either side) is very nearly a linear
function of their absolute offset from center; they
““average out.”

Said in another way, the envelope derivative on opposite
sides of center is approximately of the same slope and linear
over short corresponding absolute intervals. Such a derivative
is simply the argument of Eq. (1). Investigation showed little
discernible error over intervals of “1/7” in n.



This and several “intuitive” observations from the model
all suggested that a very good estimate of the desired center
frequency could be obtained by simply averaging the (norm-
alized) power-frequency products of the components within
the “maximum power window”, the second step of the
procedure as stated.

These steps can be described notationally for inclusion in
existing algorithms. Let:

N = total number of components in discrete spectrum
(about 100 to 1000)
7 = sample length, sec
f = rampate (a priori), Hz/sec
Then:

SR = search range

INT [2f7]

The digit “2” is not critical. It is chosen here from machine
observations of the extent of significant “side lobes” in the
transform assisted with various “f”.

FW = center frequency “window” chosen for averaging,
low-side index
K+SR
= KofMAXofq ) C, )
m=K
where
K=1,2---N-SR
C, = (power) size of m*™ Fourier component

(Step 1)
And, finally:
FW+SR
Z F C
n=FW
il — ?3)
i [2]
FW+SR
Z C
n
M=FW
where

Fn = frequency of component Cn

(Step 2)

The model statistical results, using the above, with SR = 8,
are shown in collected form on Fig. 5. The accuracy advantage
under stated conditions is evident. Improvement up to nearly
3 to 1 was accomplished in the mid-SNR region, and the
strong-signal residual was barely evident. Signal-to-noise is that
within a 100-Hz bandwidth.

IV. Conclusions

The component summation addition to existing Fourier
transform algorithms in DSN applications appears to have
considerable potential as a minor tool for accuracy improve-
ment. The data on Fig. 5 demonstrates its behavior with
respect to the present process, using the model and levels
described herein.
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Fig. 3. Transform of ramped sinusoid, SNR = 0 dB (typical) in Fig. 4. Transform of ramped sinusoid, SNR = —5 dB (typical) in
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